ipcaps_example
|
Synthetic dataset containing the top 10 principal components (PC) from the
dataset raw.data |
cal.eigen.fit()
|
(Internal function) Calculae a vector of EigenFit values, internally used for
parallelization |
check.stopping()
|
(Internal function) Check whether the IPCAPS process meets the stopping
criterion. |
clustering()
|
(Internal function) Perform the clustering process of IPCAPS |
clustering.mode()
|
(Internal function) Select a clustering method to be used for the IPCAPS
process. |
diff(<eigen.fit>)
|
(Internal function) Calculate a vector of different values from a vector of
EigenFit values, internally used for parallelization |
diff(<xy>)
|
(Internal function) Check the different value of X and Y, internally used for
parallelization |
do.glm()
|
(Internal function) Perform regression models, internally used for
parallelization |
export.groups()
|
Export the IPCAPS result to a text file |
get.node.info()
|
Get the information for specified node |
ipcaps()
|
Perform unsupervised clustering to capture population structure based on iterative pruning |
ipcaps_example
|
Synthetic dataset containing population labels for the dataset raw.data |
output.template
|
(Internal object) The HTML output template for IPCAPS |
pasre.categorical.data()
|
(Internal function) Manipulate categorical input files |
postprocess()
|
(Internal function) Perform the post-processing step of IPCAPS |
preprocess()
|
(Internal function) Perform the pre-processing step of IPCAPS |
process.each.node()
|
(Internal function) Perform the iterative process for each node |
ipcaps_example
|
Synthetic dataset containing single nucleotide polymorphisms (SNP) |
replace.missing()
|
(Internal function) Replace missing values by specified values, internally
used for parallelization |
save.eigenplots.html()
|
Generate HTML file for EigenFit plots |
save.html()
|
Generate HTML file for clustering result in text mode |
save.plots()
|
Workflow to generate HTML files for all kinds of plots |
save.plots.cluster.html()
|
Generate HTML file for scatter plots which all data points are highlighted by IPCAPS clusters |
save.plots.label.html()
|
Generate HTML file for scatter plots which data points are highlighted by given labels |
top.discriminator()
|
Detecting top discriminators between two groups |