All functions

ipcaps_example

Synthetic dataset containing the top 10 principal components (PC) from the dataset raw.data

cal.eigen.fit()

(Internal function) Calculae a vector of EigenFit values, internally used for parallelization

check.stopping()

(Internal function) Check whether the IPCAPS process meets the stopping criterion.

clustering()

(Internal function) Perform the clustering process of IPCAPS

clustering.mode()

(Internal function) Select a clustering method to be used for the IPCAPS process.

diff(<eigen.fit>)

(Internal function) Calculate a vector of different values from a vector of EigenFit values, internally used for parallelization

diff(<xy>)

(Internal function) Check the different value of X and Y, internally used for parallelization

do.glm()

(Internal function) Perform regression models, internally used for parallelization

export.groups()

Export the IPCAPS result to a text file

get.node.info()

Get the information for specified node

ipcaps()

Perform unsupervised clustering to capture population structure based on iterative pruning

ipcaps_example

Synthetic dataset containing population labels for the dataset raw.data

output.template

(Internal object) The HTML output template for IPCAPS

pasre.categorical.data()

(Internal function) Manipulate categorical input files

postprocess()

(Internal function) Perform the post-processing step of IPCAPS

preprocess()

(Internal function) Perform the pre-processing step of IPCAPS

process.each.node()

(Internal function) Perform the iterative process for each node

ipcaps_example

Synthetic dataset containing single nucleotide polymorphisms (SNP)

replace.missing()

(Internal function) Replace missing values by specified values, internally used for parallelization

save.eigenplots.html()

Generate HTML file for EigenFit plots

save.html()

Generate HTML file for clustering result in text mode

save.plots()

Workflow to generate HTML files for all kinds of plots

save.plots.cluster.html()

Generate HTML file for scatter plots which all data points are highlighted by IPCAPS clusters

save.plots.label.html()

Generate HTML file for scatter plots which data points are highlighted by given labels

top.discriminator()

Detecting top discriminators between two groups